Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 47(8): 1537-1549, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478010

RESUMO

Withdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors like irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during abstinence in a mouse model of chronic THC exposure. Using a THC treatment regimen known to produce tolerance, we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance to THC. Altered striatal DA release, sleep, and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. These findings provide a foundation for preclinical study of directly translatable non-precipitated THC withdrawal symptoms and the neural mechanisms that affect them.


Assuntos
Dronabinol , Síndrome de Abstinência a Substâncias , Animais , Agonistas de Receptores de Canabinoides , Dopamina , Dronabinol/farmacologia , Feminino , Masculino , Camundongos , Sono , Síndrome de Abstinência a Substâncias/tratamento farmacológico
2.
PLoS One ; 15(3): e0224906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214339

RESUMO

Despite the harm caused by binge drinking, the neural mechanisms leading to risky and disinhibited intoxication-related behaviors are not well understood. Evidence suggests that the globus pallidus externus (GPe), a substructure within the basal ganglia, participates in inhibitory control processes, as examined in stop-signaling tasks. In fact, studies in rodents have revealed that alcohol can change GPe activity by decreasing neuronal firing rates, suggesting that the GPe may have a central role in explaining impulsive behaviors and failures of inhibition that occur during binge drinking. In this study, twenty-five healthy volunteers underwent intravenous alcohol infusion to achieve a blood alcohol level of 0.08 g/dl, which is equivalent to a binge drinking episode. A resting state functional magnetic resonance imaging scan was collected prior to the infusion and at binge-level exposure. Functional connectivity analysis was used to investigate the association between alcohol-induced changes in GPe connectivity, drinking behaviors, and impulsivity traits. We found that individuals with greater number of drinks or heavy drinking days in the recent past had greater alcohol-induced deficits in GPe connectivity, particularly to the striatum. Our data also indicated an association between impulsivity and alcohol-induced deficits in GPe-frontal/precentral connectivity. Moreover, alcohol induced changes in GPe-amygdala circuitry suggested greater vulnerabilities to stress-related drinking in some individuals. Taken together, these findings suggest that alcohol may interact with impulsive personality traits and drinking patterns to drive alterations in GPe circuitry associated with behavioral inhibition, possibly indicating a neural mechanism by which binge drinking could lead to impulsive behaviors.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Conectoma , Globo Pálido , Imageamento por Ressonância Magnética , Estresse Psicológico , Adulto , Consumo Excessivo de Bebidas Alcoólicas/diagnóstico por imagem , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiopatologia , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/fisiopatologia
3.
Neuropharmacology ; 164: 107913, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843396

RESUMO

Alcohol is commonly used as a sleep inducer/aid by humans. However, individuals diagnosed with alcohol use disorders have sleep problems. Few studies have examined the effect of ethanol on physiological features of sedation and anesthesia, particularly at high doses. This study used polysomnography and a rapid, unbiased scoring of vigilance states with an automated algorithm to provide a thorough characterization of dose-dependent acute ethanol effects on sleep and electroencephalogram (EEG) power spectra in C57BL/6J male mice. Ethanol had a narrow dose-response effect on sleep. Only a high dose (4.0 g/kg) produced a unique, transient state that could not be characterized in terms of canonical sleep-wake states, so we dubbed this novel state Drug-Induced State with a Characteristic Oscillation in the Theta Band (DISCO-T). After this anesthetic effect, the high dose of alcohol promoted NREM sleep by increasing the duration of NREM bouts while reducing wake. REM sleep was differentially responsive to the circadian timing of ethanol administration. EEG power spectra proved more sensitive to ethanol than sleep measures as there were clear effects of ethanol at 2.0 and 4.0 g/kg doses. Ethanol promoted delta oscillations and suppressed faster frequencies, but there were clear, differential effects on wake and REM EEG power based on the timing of the ethanol injection. Understanding the neural basis of the extreme soporific effects of high dose ethanol may aid in treating acute toxicity brought about by patterns of excessive binge consumption commonly observed in young people.


Assuntos
Anestesia , Depressores do Sistema Nervoso Central/farmacologia , Eletroencefalografia/efeitos dos fármacos , Etanol/farmacologia , Hipnóticos e Sedativos/farmacologia , Sono/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , Polissonografia , Sono REM/efeitos dos fármacos
4.
Learn Mem ; 25(9): 425-434, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30115764

RESUMO

Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.


Assuntos
Alcoolismo/fisiopatologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos
5.
Front Neuroinform ; 12: 47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108495

RESUMO

Computational models in neuroscience can be used to predict causal relationships between biological mechanisms in neurons and networks, such as the effect of blocking an ion channel or synaptic connection on neuron activity. Since developing a biophysically realistic, single neuron model is exceedingly difficult, software has been developed for automatically adjusting parameters of computational neuronal models. The ideal optimization software should work with commonly used neural simulation software; thus, we present software which works with models specified in declarative format for the MOOSE simulator. Experimental data can be specified using one of two different file formats. The fitness function is customizable as a weighted combination of feature differences. The optimization itself uses the covariance matrix adaptation-evolutionary strategy, because it is robust in the face of local fluctuations of the fitness function, and deals well with a high-dimensional and discontinuous fitness landscape. We demonstrate the versatility of the software by creating several model examples of each of four types of neurons (two subtypes of spiny projection neurons and two subtypes of globus pallidus neurons) by tuning to current clamp data. Optimizations reached convergence within 1,600-4,000 model evaluations (200-500 generations × population size of 8). Analysis of the parameters of the best fitting models revealed differences between neuron subtypes, which are consistent with prior experimental results. Overall our results suggest that this easy-to-use, automatic approach for finding neuron channel parameters may be applied to current clamp recordings from neurons exhibiting different biochemical markers to help characterize ionic differences between other neuron subtypes.

6.
J Physiol ; 596(17): 4219-4235, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29917235

RESUMO

KEY POINTS: Classifying different subtypes of neurons in deep brain structures is a challenge and is crucial to better understand brain function. Understanding the diversity of neurons in the globus pallidus (GP), a brain region positioned to influence afferent and efferent information processing within basal ganglia, could help to explain a variety of brain functions. We present a classification of neurons from the GP using electrophysiological data from wild-type mice and confirmation using transgenic mice. This work will help researchers to identify specific neuronal subsets in the GP of wild-type mice when transgenic mice with labelled neurons are lacking. ABSTRACT: Classification of the extensive neuronal diversity in the brain is fundamental for neuroscience. The globus pallidus external segment (GPe), also referred to as the globus pallidus in rodents, is a large nucleus located in the core of the basal ganglia whose circuitry is implicated in action control, decision-making and reward. Although considerable progress has been made in characterizing different GPe neuronal subtypes, no work has directly attempted to characterize these neurons in non-transgenic mice. Here, we provide data showing the degree of overlap in expression of neuronal PAS domain protein (Npas1), LIM homeobox 6 (Lhx6), parvalbumin (PV) and transcription factor FoxP2 biomarkers in mouse GPe neurons. We used an unbiased statistical method to classify neurons based on electrophysiological properties from nearly 200 neurons from C57BL/6J mice. In addition, we examined the subregion distribution of the neuronal subtypes. Cluster analysis using firing rate and hyperpolarization-induced membrane potential sag variables revealed three distinct neuronal clusters: type 1, characterized by low firing rate and small sag potential; type 2, with low firing rate and larger sag potential; and type 3, with high firing rate and small sag potential. We used other electrophysiological variables and data from marker-expressing neurons to evaluate the clusters. We propose that the GPe GABAergic neurons should be classified into three subgroups: arkypallidal, low-firing prototypical and high-firing prototypical neurons. This work will help researchers identify GPe neuron subtypes when transgenic mice with labelled neurons cannot be used.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Biomarcadores/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo
7.
Neuron ; 96(6): 1223-1238, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29268093

RESUMO

Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.


Assuntos
Alcoolismo/patologia , Encéfalo/citologia , Etanol/efeitos adversos , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Humanos , Neurônios/metabolismo
8.
Neuropsychopharmacology ; 42(5): 1070-1081, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27827370

RESUMO

Although ethanol is one of the most widely used drugs, we still lack a full understanding of which neuronal subtypes are affected by this drug. Pacemaker neurons exert powerful control over brain circuit function, but little is known about ethanol effects on these types of neurons. Neurons in the external globus pallidus (GPe) generate pacemaker activity that controls basal ganglia, circuitry associated with habitual and compulsive drug use. We performed patch-clamp recordings from GPe neurons and found that bath application of ethanol dose-dependently decreased the firing rate of low-frequency GPe neurons, but did not alter the firing of high-frequency neurons. GABA or glutamate receptor antagonists did not block the ethanol effect. The GPe is comprised of a heterogeneous population of neurons. We used Lhx6-EGFP and Npas1-tdTm mice strains to identify low-frequency neurons. Lhx6 and Npas1 neurons exhibited decreased firing with ethanol, but only Npas1 neurons were sensitive to 10 mM ethanol. Large-conductance voltage and Ca2+-activated K+ (BK) channel have a key role in the ethanol effect on GPe neurons, as the application of BK channel inhibitors blocked the ethanol-induced firing decrease. Ethanol also increased BK channel open probability measured in single-channel recordings from Npas1-tdTm neurons. In addition, in vivo electrophysiological recordings from GPe showed that ethanol decreased the firing of a large subset of low-frequency neurons. These findings indicate how selectivity of ethanol effects on pacemaker neurons can occur, and enhance our understanding of the mechanisms contributing to acute ethanol effects on the basal ganglia.


Assuntos
Etanol/administração & dosagem , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Front Behav Neurosci ; 8: 267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25152719

RESUMO

Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...